The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171565 Number of partitions of n into odd divisors of n. 7
 1, 1, 1, 2, 1, 2, 3, 2, 1, 5, 3, 2, 5, 2, 3, 14, 1, 2, 12, 2, 5, 18, 3, 2, 9, 7, 3, 23, 5, 2, 54, 2, 1, 26, 3, 26, 35, 2, 3, 30, 9, 2, 72, 2, 5, 286, 3, 2, 17, 9, 18, 38, 5, 2, 93, 38, 9, 42, 3, 2, 275, 2, 3, 493, 1, 44, 108, 2, 5, 50, 110, 2, 117, 2, 3, 698, 5, 50, 126, 2, 17, 239, 3, 2, 375, 56 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(2*n+1) = A018818(2*n+1), a(A005408(n))=A018818(A005408(n)); a(2^k) = 1, a(A000079(n))=1; for odd primes p: a(p*2^k) = 2^k + 1, especially for n>1: a(A000040(n))=2, a(A100484(n))=3, a(A001749(n))=5. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(n) = f(n,n,1) with f(n,m,k) = if k<=m then f(n,m,k+2)+f(n,m-k,k)*0^(n mod k) else 0^m. MAPLE with(numtheory): a:= proc(n) option remember; local b, l; l, b:= sort(       [select(x-> is(x:: odd), divisors(n))[]]),       proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,         b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))       end; b(n, nops(l))     end: seq(a(n), n=0..100);  # Alois P. Heinz, Mar 30 2017 MATHEMATICA a[0] = 1; a[n_] := a[n] = Module[{b, l}, l = Select[Divisors[n], OddQ]; b[m_, i_] := b[m, i] = If[m == 0, 1, If[i < 1, 0, b[m, i-1] + If[l[[i]] > m, 0, b[m - l[[i]], i]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 11 2017, after Alois P. Heinz *) CROSSREFS Cf. A038550, A065091. Sequence in context: A190167 A339010 A332842 * A328266 A115116 A141662 Adjacent sequences:  A171562 A171563 A171564 * A171566 A171567 A171568 KEYWORD nonn AUTHOR Reinhard Zumkeller, Dec 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 10:28 EDT 2021. Contains 347689 sequences. (Running on oeis4.)