login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115116
Number of imprimitive (periodic) asymmetric rhythm cycles: ones having nontrivial shift automorphisms. Asymmetric rhythm cycles (A115114): binary necklaces of length 2n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th bead (modulo 2n) is of color 0.
1
1, 1, 2, 1, 2, 3, 2, 1, 6, 3, 2, 11, 2, 3, 30, 1, 2, 63, 2, 11, 162, 3, 2, 411, 26, 3, 1098, 11, 2, 3015, 2, 1, 8058, 3, 182, 22151, 2, 3, 61326, 411, 2, 170883, 2, 11, 479410, 3, 2, 1345211, 158, 2955, 3798246, 11, 2, 10761723, 8078, 411, 30585834, 3, 2, 87191759, 2, 3, 249057230, 1, 61346, 713205963, 2, 11, 2046590850, 173775, 2
OFFSET
1,3
COMMENTS
a(2^k)=1 for all k including k=0.
a(p)=2, a(2p)=3, a(4p)=11, etc. for an odd prime p.
LINKS
R. W. Hall and P. Klingsberg, Asymmetric Rhythms, Tiling Canons and Burnside's Lemma, Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas).
R. W. Hall and P. Klingsberg, Asymmetric Rhythms and Tiling Canons, Preprint, 2004; The American Mathematical Monthly, Volume 113, 2006 - Issue 10, [alternative link].
FORMULA
a(n) = A115114(n) - A006575(n).
MATHEMATICA
A006575[n_] := DivisorSum[n, If[BitAnd[#, 1] == 1, MoebiusMu[#] (3^(n/#) - 1), 0]&]/(2n);
A115114[n_] := Sum[EulerPhi[2d] + Boole[OddQ[d]] EulerPhi[d] 3^(n/d), {d, Divisors[n]}]/(2n);
a[n_] := A115114[n] - A006575[n];
Array[a, 60] (* Jean-François Alcover, Aug 29 2019 *)
PROG
(PARI)
A006575(n) = (sumdiv(n, d, bitand(d, 1)*moebius(d)*(3^(n/d)-1)) / (2*n)); \\ From A006575.
A115114(n) = (1/(2*n))*(sumdiv(n, d, eulerphi(2*d)+(bitand(d, 1)*eulerphi(d)*(3^(n/d)))));
A115116(n) = (A115114(n) - A006575(n)); \\ Antti Karttunen, Jan 19 2020
CROSSREFS
Sequence in context: A171565 A328266 A359895 * A141662 A328383 A088062
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Jan 17 2006
EXTENSIONS
More terms from Antti Karttunen, Jan 19 2020
STATUS
approved