login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115117
Number of primitive (aperiodic, or Lyndon) 3-asymmetric rhythm cycles: ones having no nontrivial shift automorphism. 3-asymmetric rhythm cycles (A115115): binary necklaces of length 3n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th and (k+2n)-th beads (modulo 3n) are of color 0.
1
1, 2, 7, 20, 68, 224, 780, 2720, 9709, 34918, 127100, 465920, 1720740, 6390930, 23860928, 89477120, 336860180, 1272578048, 4822419420, 18325176316, 69810262080, 266548209850, 1019836872140, 3909374443520, 15011998757888
OFFSET
1,2
LINKS
R. W. Hall and P. Klingsberg, Asymmetric Rhythms, Tiling Canons and Burnside's Lemma, Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas).
R. W. Hall and P. Klingsberg, Asymmetric Rhythms and Tiling Canons, Preprint, 2004.
FORMULA
a(n) = (Sum_{d|n} mu(3d) + Sum_{d|n, (3,d)=1} mu(d) 4^(n/d))/(3n), where mu(n) is the Moebius function A008683.
a(n) ~ 4^n / (3*n). - Vaclav Kotesovec, Oct 27 2024
MATHEMATICA
a[n_] := Sum[MoebiusMu[3d] + Boole[GCD[3, d] == 1] MoebiusMu[d] 4^(n/d), {d, Divisors[n]}]/(3n);
Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
PROG
(PARI) a(n) = 1/(3*n) * sumdiv(n, d, moebius(3*d) + if(gcd(3, d)==1, moebius(d)*4^(n/d), 0) ); \\ Joerg Arndt, Aug 29 2019
CROSSREFS
Sequence in context: A000150 A318232 A304787 * A029890 A095268 A118397
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Jan 17 2006
STATUS
approved