OFFSET
1,2
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..1000
R. W. Hall and P. Klingsberg, Asymmetric Rhythms, Tiling Canons and Burnside's Lemma, Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas).
R. W. Hall and P. Klingsberg, Asymmetric Rhythms and Tiling Canons, Preprint, 2004.
FORMULA
a(n) = (Sum_{d|n} mu(3d) + Sum_{d|n, (3,d)=1} mu(d) 4^(n/d))/(3n), where mu(n) is the Moebius function A008683.
a(n) ~ 4^n / (3*n). - Vaclav Kotesovec, Oct 27 2024
MATHEMATICA
a[n_] := Sum[MoebiusMu[3d] + Boole[GCD[3, d] == 1] MoebiusMu[d] 4^(n/d), {d, Divisors[n]}]/(3n);
Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
PROG
(PARI) a(n) = 1/(3*n) * sumdiv(n, d, moebius(3*d) + if(gcd(3, d)==1, moebius(d)*4^(n/d), 0) ); \\ Joerg Arndt, Aug 29 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Jan 17 2006
STATUS
approved