login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171089
a(n) = 2*(Lucas(n)^2 - (-1)^n).
1
6, 4, 16, 34, 96, 244, 646, 1684, 4416, 11554, 30256, 79204, 207366, 542884, 1421296, 3720994, 9741696, 25504084, 66770566, 174807604, 457652256, 1198149154, 3136795216, 8212236484, 21499914246, 56287506244, 147362604496, 385800307234, 1010038317216
OFFSET
0,1
COMMENTS
In Thomas Koshy's book on Fibonacci and Lucas numbers, the formula for even-indexed Lucas numbers in terms of squares of Lucas numbers (A001254) is erroneously given as L(2n) = 2L(n)^2 + 2(-1)^(n - 1) on page 404 as Identity 34.7. - Alonso del Arte, Sep 07 2010
REFERENCES
Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
FORMULA
a(n) = 2*(A000032(n))^2 -2*(-1)^n.
a(n) = 2*A047946(n).
a(n) = 2*a(n-1) + 2*a(n-2) -a(n-3).
G.f.: 2*(3-4*x-2*x^2)/( (1+x)*(x^2-3*x+1) ).
a(n) = 2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n). - Colin Barker, Oct 01 2016
MATHEMATICA
f[n_] := 2 (LucasL@n^2 - (-1)^n); Array[f, 27, 0] (* Robert G. Wilson v, Sep 10 2010 *)
CoefficientList[Series[2*(3 - 4*x - 2*x^2)/((1 + x)*(x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
PROG
(Magma) I:=[6, 4, 16]; [n le 3 select I[n] else 2*Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
(PARI) a(n) = round(2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n)) \\ Colin Barker, Oct 01 2016
(PARI) Vec(2*(3-4*x-2*x^2)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Oct 01 2016
CROSSREFS
Cf. A001254.
Sequence in context: A199890 A198459 A083581 * A368257 A180495 A213761
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Sep 08 2010
EXTENSIONS
a(21) onwards from Robert G. Wilson v, Sep 10 2010
STATUS
approved