Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 26 2023 12:17:35
%S 6,4,16,34,96,244,646,1684,4416,11554,30256,79204,207366,542884,
%T 1421296,3720994,9741696,25504084,66770566,174807604,457652256,
%U 1198149154,3136795216,8212236484,21499914246,56287506244,147362604496,385800307234,1010038317216
%N a(n) = 2*(Lucas(n)^2 - (-1)^n).
%C In Thomas Koshy's book on Fibonacci and Lucas numbers, the formula for even-indexed Lucas numbers in terms of squares of Lucas numbers (A001254) is erroneously given as L(2n) = 2L(n)^2 + 2(-1)^(n - 1) on page 404 as Identity 34.7. - _Alonso del Arte_, Sep 07 2010
%D Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
%H Vincenzo Librandi, <a href="/A171089/b171089.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1).
%F a(n) = 2*(A000032(n))^2 -2*(-1)^n.
%F a(n) = 2*A047946(n).
%F a(n) = 2*a(n-1) + 2*a(n-2) -a(n-3).
%F G.f.: 2*(3-4*x-2*x^2)/( (1+x)*(x^2-3*x+1) ).
%F a(n) = 2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n). - _Colin Barker_, Oct 01 2016
%t f[n_] := 2 (LucasL@n^2 - (-1)^n); Array[f, 27, 0] (* _Robert G. Wilson v_, Sep 10 2010 *)
%t CoefficientList[Series[2*(3 - 4*x - 2*x^2)/((1 + x)*(x^2 - 3*x + 1)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 19 2012 *)
%o (Magma) I:=[6, 4, 16]; [n le 3 select I[n] else 2*Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Dec 19 2012
%o (PARI) a(n) = round(2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n)) \\ _Colin Barker_, Oct 01 2016
%o (PARI) Vec(2*(3-4*x-2*x^2)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ _Colin Barker_, Oct 01 2016
%Y Cf. A001254.
%K nonn,easy
%O 0,1
%A _R. J. Mathar_, Sep 08 2010
%E a(21) onwards from _Robert G. Wilson v_, Sep 10 2010