login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171066
G.f. -x*(x-1)*(1+x)/(1-x-9*x^2-x^3+x^4).
1
0, 1, 1, 9, 19, 100, 279, 1189, 3781, 14661, 49600, 184141, 641421, 2333629, 8240959, 29700900, 105561739, 378777169, 1350292761, 4835148121, 17260998400, 61748847081, 220582688041, 788748162049, 2818480203099, 10076047502500
OFFSET
0,4
COMMENTS
The member k=9 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).
LINKS
Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
FORMULA
a(n)= +a(n-1) +9*a(n-2) +a(n-3) -a(n-4)
MATHEMATICA
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 9*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
PROG
(Magma) I:=[0, 1, 1, 9]; [n le 4 select I[n] else Self(n-1) + 9*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
CROSSREFS
Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).
Sequence in context: A186508 A000981 A060227 * A068174 A165247 A177130
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, at the request of R. K. Guy, Sep 03 2010
STATUS
approved