Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:49
%S 0,1,1,9,19,100,279,1189,3781,14661,49600,184141,641421,2333629,
%T 8240959,29700900,105561739,378777169,1350292761,4835148121,
%U 17260998400,61748847081,220582688041,788748162049,2818480203099,10076047502500
%N G.f. -x*(x-1)*(1+x)/(1-x-9*x^2-x^3+x^4).
%C The member k=9 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).
%H Vincenzo Librandi, <a href="/A171066/b171066.txt">Table of n, a(n) for n = 0..1000</a>
%H Hugh Williams, R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (1,9,1,-1).
%F a(n)= +a(n-1) +9*a(n-2) +a(n-3) -a(n-4)
%t CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 9*x^2 - x^3 + x^4), {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 19 2012 *)
%o (Magma) I:=[0, 1, 1, 9]; [n le 4 select I[n] else Self(n-1) + 9*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Dec 19 2012
%Y Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).
%K nonn,easy
%O 0,4
%A R. J. Mathar, at the request of _R. K. Guy_, Sep 03 2010