login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171064
G.f.: -x*(x-1)*(1+x)/(1-x-7*x^2-x^3+x^4).
1
0, 1, 1, 7, 15, 64, 175, 631, 1905, 6433, 20224, 66529, 212625, 692119, 2226799, 7217728, 23284815, 75343591, 243328225, 786800449, 2542156800, 8217744577, 26556314401, 85835882791, 277405671375, 896595420736, 2897714688751
OFFSET
0,4
COMMENTS
The member k=7 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).
LINKS
Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277
FORMULA
a(n) = +a(n-1) +7*a(n-2) +a(n-3) -a(n-4).
The roots (r1..r4) of the characteristic polynomials for this "family" of sequences have the following form (not simplified) for k= 1,2,3,4,5,6.... r1=(sqrt(4*k+10+2*sqrt(4*k+9))+sqrt(4*k-6+2*sqrt(4*k+9)))/4. r2=(sqrt(4*k+10+2*sqrt(4*k+9))-sqrt(4*k-6+2*sqrt(4*k+9)))/4. r3=(-sqrt(4*k+10-2*sqrt(4*k+9))-sqrt(4*k-6-2*sqrt(4*k+9)))/4. r4=(-sqrt(4*k+10-2*sqrt(4*k+9))+sqrt(4*k-6-2*sqrt(4*k+9)))/4. For k=1,2,3, r3 and r4 are complex . Closed-form (not simplified) is as follows for all k (note:for k1-k3 set r3 and r4 =0 and round a(n) to nearest integer): a(n)=sqrt(4*k+9)/(4*k+9)*(((r1)^n+(r2)^n)-((r3)^n+(r4)^n)). [Tim Monahan, Sep 17 2011]
MATHEMATICA
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 7*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1, 7, 1, -1}, {0, 1, 1, 7}, 30] (* Harvey P. Dale, Nov 15 2020 *)
PROG
(Magma) I:=[0, 1, 1, 7]; [n le 4 select I[n] else Self(n-1) + 7*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
CROSSREFS
Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).
Sequence in context: A187986 A039789 A279882 * A042313 A058206 A219523
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, at the request of R. K. Guy, Sep 03 2010
STATUS
approved