login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219523
Number of 6Xn arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..1 6Xn array
1
7, 15, 74, 465, 2125, 9292, 37442, 146163, 554185, 2025086, 7113545, 23974181, 77690406, 242798386, 733943376, 2151321628, 6127503021, 16989704367, 45932207763, 121260063820, 313015935010, 791017133814, 1959057933111
OFFSET
1,1
COMMENTS
Row 6 of A219519
LINKS
FORMULA
Empirical: a(n) = (1/10333147966386144929666651337523200000000)*n^35 - (1/29523279903960414084761860964352000000)*n^34 + (61/5788878412541257663678796267520000000)*n^33 - (229/98674063850135073812706754560000000)*n^32 + (21787/50602084025710294262926540800000000)*n^31 - (7697/115746702463501552859480064000000)*n^30 + (785767981/89124960896896195701799649280000000)*n^29 - (12262561/12195533784468554420060160000000)*n^28 + (48314581657/487821351378742176802406400000000)*n^27 - (245182959041/29269281082724530608144384000000)*n^26 + (582606820043/971228029894328315805696000000)*n^25 - (217521122153737/6191578690576343013261312000000)*n^24 + (17255706612998819773/11268673216848944284135587840000000)*n^23 - (3969387378240839/127257743837932741774540800000)*n^22 - (948399883983541991/424192479459775805915136000000)*n^21 + (554793661807585003/1701306735801239863296000000)*n^20 - (271260606648361279201391/11094264847409521077780480000000)*n^19 + (123053036797554708426697/91089753483993962533355520000)*n^18 - (6283429253036687596286873581/106896504823863503090614272000000)*n^17 + (60068223013208967643606567/29826033712015486353408000000)*n^16 - (4471497680373555887195897199029/87489698888578759969996800000000)*n^15 + (1896409538897788242613596607327/2624690966657362799099904000000)*n^14 + (160170795236717659468816376954201/15478946726440857533153280000000)*n^13 - (72352191783197242910804705194541/65961420709265017896960000000)*n^12 + (1259258806466705069732091179346770473/30012446422715583143116800000000)*n^11 - (22307606743799390366466272261503061/20787841678071399579648000000)*n^10 + (866699612577308238824016124027951799/44836521266428508897280000000)*n^9 - (284271553091628685932040620315311159/1323300106821674741760000000)*n^8 + (321095870488437210935837966277147739/3279974623746031411200000000)*n^7 + (1281185590628544666884744796547777103/23688705615943560192000000)*n^6 - (658754164273482968835981172916338402084271/508904462747315503604736000000)*n^5 + (64005575844906944283904692926158114339/3563756741927979717120000)*n^4 - (1008226574811939900812388929656087642397/6130510109626107965760000)*n^3 + (2599884447896121494946453877727831/2680707555916790400)*n^2 - (14646211686805596893562842932/4512611027925)*n + 4284164824726022 for n>45
EXAMPLE
Some solutions for n=3
..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..0....0..0..1
..0..0..0....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0....0..0..1
..1..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..1..0..1....0..0..1....0..0..0....0..0..0....1..0..0....1..0..1....0..0..0
..1..1..1....0..0..1....1..0..1....0..1..0....1..0..1....1..1..1....0..0..0
..1..1..1....0..0..1....1..1..1....1..1..1....1..1..1....1..1..1....0..1..0
CROSSREFS
Sequence in context: A171064 A042313 A058206 * A177128 A177177 A335758
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 21 2012
STATUS
approved