login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219525
T(n,k)=Sum of neighbor maps: log base 2 of the number of nXk binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their king-move neighbors in a random 0..1 nXk array
1
1, 1, 1, 3, 1, 3, 4, 3, 3, 4, 4, 4, 9, 4, 4, 6, 4, 12, 12, 4, 6, 7, 6, 12, 16, 12, 6, 7, 7, 7, 18, 16, 16, 18, 7, 7, 9, 7, 21, 24, 16, 24, 21, 7, 9, 10, 9, 21, 28, 24, 24, 28, 21, 9, 10, 10, 10, 27, 28, 28, 36, 28, 28, 27, 10, 10, 12, 10, 30, 36, 28, 42, 42, 28, 36, 30, 10, 12, 13, 12, 30, 40
OFFSET
1,4
COMMENTS
Table starts
..1..1..3..4..4..6..7..7..9.10.10.12.13.13.15.16.16
..1..1..3..4..4..6..7..7..9.10.10.12.13.13.15.16
..3..3..9.12.12.18.21.21.27.30.30.36.39.39.45
..4..4.12.16.16.24.28.28.36.40.40.48.52.52
..4..4.12.16.16.24.28.28.36.40.40.48.52
..6..6.18.24.24.36.42.42.54.60.60.72
..7..7.21.28.28.42.49.49.63.70.70
..7..7.21.28.28.42.49.49.63.70
..9..9.27.36.36.54.63.63
.10.10.30.40.40.60.70
.10.10.30.40.40.60
.12.12.36.48.48
LINKS
FORMULA
Empirical: T(n,k)=3*((n-1)/3)+(n%3)^2-3*(n%3)+3+((k-1)/3)*(n*3-(((n%3)^2-(n%3))*3)/2)+((k%3)^2-3*(k%3)+2)*((n*3-(((n%3)^2-(n%3))*3)/2)/3) where '%'=modulo and '/'=integer divide truncating towards zero
EXAMPLE
Some solutions for n=3 k=3
..1..0..0....1..0..1....0..1..0....1..1..0....0..0..1....1..1..0....0..1..1
..0..0..0....0..1..0....0..0..1....1..1..1....1..0..0....0..0..0....1..0..1
..1..1..0....0..0..0....1..0..0....0..1..1....0..1..1....1..0..0....0..1..0
CROSSREFS
Sequence in context: A081772 A204217 A296955 * A050121 A029152 A320279
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 21 2012
STATUS
approved