login
A170344
Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.
0
1, 47, 2162, 99452, 4574792, 210440432, 9680259872, 445291954112, 20483429889152, 942237774900992, 43342937645445632, 1993775131690499072, 91713656057762957312, 4218828178657096036352, 194066096218226417672192
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170766, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, -1035).
FORMULA
G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(1035*t^42 - 45*t^41 - 45*t^40 - 45*t^39 - 45*t^38 - 45*t^37 -
45*t^36 - 45*t^35 - 45*t^34 - 45*t^33 - 45*t^32 - 45*t^31 - 45*t^30 -
45*t^29 - 45*t^28 - 45*t^27 - 45*t^26 - 45*t^25 - 45*t^24 - 45*t^23 -
45*t^22 - 45*t^21 - 45*t^20 - 45*t^19 - 45*t^18 - 45*t^17 - 45*t^16 -
45*t^15 - 45*t^14 - 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 -
45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1)
MATHEMATICA
coxG[{42, 1035, -45}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 10 2019 *)
CROSSREFS
Sequence in context: A170200 A170248 A170296 * A170392 A170440 A170488
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved