login
A170341
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.
0
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
FORMULA
G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(903*t^42 - 42*t^41 - 42*t^40 - 42*t^39 - 42*t^38 - 42*t^37 -
42*t^36 - 42*t^35 - 42*t^34 - 42*t^33 - 42*t^32 - 42*t^31 - 42*t^30 -
42*t^29 - 42*t^28 - 42*t^27 - 42*t^26 - 42*t^25 - 42*t^24 - 42*t^23 -
42*t^22 - 42*t^21 - 42*t^20 - 42*t^19 - 42*t^18 - 42*t^17 - 42*t^16 -
42*t^15 - 42*t^14 - 42*t^13 - 42*t^12 - 42*t^11 - 42*t^10 - 42*t^9 -
42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1)
MATHEMATICA
coxG[{42, 903, -42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 03 2015 *)
CROSSREFS
Sequence in context: A170197 A170245 A170293 * A170389 A170437 A170485
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved