login
A169953
Third entry in row n of triangle in A169950.
1
1, 1, 4, 8, 15, 23, 44, 64, 117, 173, 262, 374, 571, 791, 1188, 1644, 2355, 3205, 4552, 5980, 8283, 10925, 14702, 19338, 26031, 33581, 44690, 57566, 75531, 96531, 125738, 158690, 204953, 258325, 329394, 412054, 523931, 649973, 822434, 1018332, 1274909
OFFSET
2,3
COMMENTS
Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?
FORMULA
a(n) = A169948(n)-A169948(n-1) for n>2. - Andrew Howroyd, Jul 09 2017
MATHEMATICA
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] + sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]];
A196723[n_] := A196723[n] = b[n - 1, {n}] + If[n == 0, 0, A196723[n - 1]]; c[n_, s_] := c[n, s] = Module[{sn, m}, If[n < 1, 1, sn = Append[s, n]; m = Length[sn]; If[m*(m - 1)/2 == Length[Table[sn[[i]] - sn[[j]], {i, 1, m - 1}, {j, i + 1, m}] // Flatten // Union], c[n-1, sn], 0] + c[n-1, s]]];
A143823[n_] := A143823[n] = c[n - 1, {n}] + If[n == 0, 0, A143823[n - 1]];
a[n_] := A196723[n+1] - A196723[n] - A143823[n+1] + A143823[n];
Table[Print[n, " ", a[n]]; a[n], {n, 2, 42}] (* Jean-François Alcover, Sep 07 2019, after Alois P. Heinz in A196723 and A143823 *)
CROSSREFS
Related to thickness: A169940-A169954, A061909.
Sequence in context: A126255 A267682 A194804 * A213035 A014146 A049845
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 01 2010
EXTENSIONS
a(15)-a(28) and definition corrected by Nathaniel Johnston, Nov 15 2010
Offset corrected and a(30)-a(42) from Andrew Howroyd, Jul 09 2017
STATUS
approved