login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126255
Number of distinct terms i^j for 2 <= i,j <= n.
4
1, 4, 8, 15, 23, 34, 44, 54, 69, 88, 106, 129, 152, 177, 195, 226, 256, 291, 324, 361, 399, 442, 483, 519, 564, 600, 648, 703, 755, 814, 856, 915, 976, 1039, 1085, 1156, 1224, 1295, 1365, 1444, 1519, 1602, 1681, 1762, 1846, 1937, 2023, 2095, 2184, 2279
OFFSET
2,2
COMMENTS
An easy upper bound is (n-1)^2 = A000290(n-1).
LINKS
EXAMPLE
a(4) = 8 as there are 8 distinct terms in 2^2=4, 2^3=8, 2^4=16, 3^2=9, 3^3=27, 3^4=81, 4^2=16, 4^3=64, 4^4=256.
MATHEMATICA
SetAttributes[a, {Listable, NumericFunction}]
a[n_ /; n < 2] := "error"
a[2] := 1
a[n_Integer?IntegerQ /; n > 2] :=
Length[DeleteDuplicates[
Distribute[f[Range[2, n], Range[2, n]], List,
f] /. {f ->
Power}]](*By using Distribute instead of Outer I avoid having to use Flatten on Outer*)
a[Range[2, 100]]
(* Peter Cullen Burbery, Aug 15 2023 *)
PROG
(PARI) lim=51; z=listcreate((lim-1)^2); for(m=2, lim, for(i=2, m, x=factor(i); x[, 2]*=m; s=Str(x); f=setsearch(z, s, 1); if(f, listinsert(z, s, f))); t=factor(m); for(j=2, m, x=t; x[, 2]=j*t[, 2]; s=Str(x); f=setsearch(z, s, 1); if(f, listinsert(z, s, f))); print1(#z, ", "))
(Python)
def A126255(n): return len({i**j for i in range(2, n+1) for j in range(2, n+1)}) # Chai Wah Wu, Oct 17 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nick Hobson, Dec 24 2006
STATUS
approved