|
|
A169824
|
|
Numbers n such that n is divisible by n-with-its-digits-reversed.
|
|
3
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 300, 303, 313, 323, 330, 333, 343, 353, 363, 373, 383, 393
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If n is a term, then so is n*10^k. Positive terms in A002113 is a subsequence. - Chai Wah Wu, Sep 28 2017
a(n) = A061917(n+1) for 1 <= n < 78, but a(78) = 510 differs from A061917(79) = 515. - Georg Fischer, Oct 28 2018
|
|
LINKS
|
Chai Wah Wu, Table of n, a(n) for n = 1..10000
Erich Friedman, What's Special About This Number? (See the entry for "540")
L. H. Kendrick, Young Graphs: 1089 et al., J. Int. Seq. 18 (2015) 15.9.7.
|
|
EXAMPLE
|
40 is divisible by 4.
|
|
MATHEMATICA
|
fQ[n_] := Mod[n, FromDigits@ Reverse@ IntegerDigits@ n] == 0; Select[ Range@ 399, fQ@# &] (* Robert G. Wilson v, Jun 10 2010 *)
|
|
PROG
|
(Python)
A169824_list = [n for n in range(1, 1000) if not n % int(str(n)[::-1])] # Chai Wah Wu, Sep 28 2017
|
|
CROSSREFS
|
Cf. A031877.
Cf. A002113. - Robert G. Wilson v, Jun 10 2010
Sequence in context: A096091 A084050 A281625 * A325152 A061917 A125289
Adjacent sequences: A169821 A169822 A169823 * A169825 A169826 A169827
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
N. J. A. Sloane, May 29 2010
|
|
STATUS
|
approved
|
|
|
|