login
A169414
Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
0
1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170736, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 136. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, -120).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^32 - 15*t^31 - 15*t^30 - 15*t^29 - 15*t^28 - 15*t^27 - 15*t^26 - 15*t^25 - 15*t^24 - 15*t^23 - 15*t^22 - 15*t^21 - 15*t^20 - 15*t^19 - 15*t^18 - 15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-15*sum(k=1..31, x^k)+120*x^32).
MATHEMATICA
coxG[{32, 120, -15}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 12 2018 *)
CROSSREFS
Cf. A170736 (G.f.: (1+x)/(1-16*x) ).
Sequence in context: A169270 A169318 A169366 * A169462 A169510 A169558
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved