login
A169413
Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
0
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093750000, 2075941406250000, 31139121093750000, 467086816406250000, 7006302246093750000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170735, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 105. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, -105).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^32 - 14*t^31 - 14*t^30 - 14*t^29 - 14*t^28 - 14*t^27 - 14*t^26 - 14*t^25 - 14*t^24 - 14*t^23 - 14*t^22 - 14*t^21 - 14*t^20 - 14*t^19 - 14*t^18 - 14*t^17 - 14*t^16 - 14*t^15 - 14*t^14 - 14*t^13 - 14*t^12 - 14*t^11 - 14*t^10 - 14*t^9 - 14*t^8 - 14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 - 14*t^2 - 14*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-14*sum(k=1..31, x^k)+105*x^32).
MATHEMATICA
coxG[{32, 105, -14}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 11 2015 *)
CROSSREFS
Cf. A170735 (G.f.: (1+x)/(1-15*x) ).
Sequence in context: A169269 A169317 A169365 * A169461 A169509 A169557
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved