login
A169072
Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
0
1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003953, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 10999999999999999999999945, A003953(25) = 11000000000000000000000000. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, -45).
FORMULA
G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).
MATHEMATICA
coxG[{25, 45, -9}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 19 2023 *)
CROSSREFS
Cf. A003953 (G.f.: (1+x)/(1-10*x)).
Sequence in context: A168928 A168976 A169024 * A169120 A169168 A169216
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved