login
A169070
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
0
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395904, 20266198323167232, 162129586585337856
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 42501298345826806923228, A003951(25) = 42501298345826806923264. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
FORMULA
G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^25 - 7*t^24 - 7*t^23 - 7*t^22 - 7*t^21 - 7*t^20 - 7*t^19 - 7*t^18 - 7*t^17 - 7*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
MATHEMATICA
coxG[{25, 28, -7}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 23 2015 *)
CROSSREFS
Cf. A003951 (G.f.: (1+x)/(1-8*x)).
Sequence in context: A168926 A168974 A169022 * A169118 A169166 A169214
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved