login
A169120
Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
0
1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, 110000000, 1100000000, 11000000000, 110000000000, 1100000000000, 11000000000000, 110000000000000, 1100000000000000, 11000000000000000, 110000000000000000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003953, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 109999999999999999999999945, A003953(26) = 110000000000000000000000000. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, -45).
FORMULA
G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^26 - 9*t^25 - 9*t^24 - 9*t^23 - 9*t^22 - 9*t^21 - 9*t^20 - 9*t^19 - 9*t^18 - 9*t^17 - 9*t^16 - 9*t^15 - 9*t^14 - 9*t^13 - 9*t^12 - 9*t^11 - 9*t^10 - 9*t^9 - 9*t^8 - 9*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1).
MATHEMATICA
coxG[{26, 45, -9}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 29 2019 *)
CROSSREFS
Cf. A003953 (G.f.: (1+x)/(1-10*x)).
Sequence in context: A168976 A169024 A169072 * A169168 A169216 A169264
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved