login
A169060
Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.
0
1, 47, 2162, 99452, 4574792, 210440432, 9680259872, 445291954112, 20483429889152, 942237774900992, 43342937645445632, 1993775131690499072, 91713656057762957312, 4218828178657096036352, 194066096218226417672192
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170766, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 8232428862641605102710284483950744173511, A170766(24) = 8232428862641605102710284483950744174592. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, -1035).
FORMULA
G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^24 - 45*t^23 - 45*t^22 - 45*t^21 - 45*t^20 - 45*t^19 - 45*t^18 - 45*t^17 - 45*t^16 - 45*t^15 - 45*t^14 - 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
MATHEMATICA
coxG[{24, 1035, -45}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 14 2015 *)
CROSSREFS
Cf. A170766 (G.f.: (1+x)/(1-46*x)).
Sequence in context: A168916 A168964 A169012 * A169108 A169156 A169204
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved