login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169058
Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.
0
1, 45, 1980, 87120, 3833280, 168664320, 7421230080, 326534123520, 14367501434880, 632170063134720, 27815482777927680, 1223881242228817920, 53850774658067988480, 2369434084954991493120, 104255099738019625697280
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170764, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 2835463577245705982004630179844225760290, A170764(24) = 2835463577245705982004630179844225761280. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, -946).
FORMULA
G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^24 - 43*t^23 - 43*t^22 - 43*t^21 - 43*t^20 - 43*t^19 - 43*t^18 - 43*t^17 - 43*t^16 - 43*t^15 - 43*t^14 - 43*t^13 - 43*t^12 - 43*t^11 - 43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
CROSSREFS
Cf. A170764 (G.f.: (1+x)/(1-44*x)).
Sequence in context: A168914 A168962 A169010 * A169106 A169154 A169202
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved