login
A168240
a(n) = 13*n^2 + 7*n + 1.
3
21, 67, 139, 237, 361, 511, 687, 889, 1117, 1371, 1651, 1957, 2289, 2647, 3031, 3441, 3877, 4339, 4827, 5341, 5881, 6447, 7039, 7657, 8301, 8971, 9667, 10389, 11137, 11911, 12711, 13537, 14389, 15267, 16171, 17101, 18057, 19039, 20047, 21081, 22141, 23227
OFFSET
1,1
COMMENTS
Consider the quadratic cyclotomic polynomial f(x) = x^2+x+1 and the quotients defined by f(x + n*f(x))/f(x). a(n) is the quotient at x=3.
FORMULA
From R. J. Mathar, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(21+4*x+x^2)/(1-x)^3. (End)
E.g.f.: (13*x^2 + 20*x + 1)*exp(x). - G. C. Greubel, Apr 09 2016
EXAMPLE
f(x) = 13 when x = 3. Hence at n = 1, f(x + f(x))/f(x) = 21 = a(1).
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {21, 67, 139}, 50] (* G. C. Greubel, Apr 09 2016 *)
Table[13n^2+7n+1, {n, 50}] (* Harvey P. Dale, Mar 22 2019 *)
PROG
(PARI) a(n)=13*n^2+7*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
A.K. Devaraj, Nov 21 2009
EXTENSIONS
Edited, definition simplified, sequence extended beyond a(8) by R. J. Mathar, Nov 23 2009
STATUS
approved