login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168141
a(n) = pi(n + 1) - pi(n - 2), where pi is the prime counting function.
1
1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0
OFFSET
1,2
COMMENTS
Conjecture: a(n) = 2 for infinitely many n. This is equivalent to the twin prime conjecture. - Andrew Slattery, Apr 26 2020
LINKS
Eric Weisstein's World of Mathematics, Twin Prime Conjecture
Wikipedia, Twin prime
FORMULA
From Alois P. Heinz, Apr 28 2020: (Start)
a(n) = 2 <=> n in { 2,3 } union { A014574 }.
a(n) = 0 <=> { A079364 }. (End)
MAPLE
A168141 := proc(n) numtheory[pi](n+1)-numtheory[pi](n-2) ; end proc: seq(A168141(n), n=1..120) ; # R. J. Mathar, Nov 19 2009
# second Maple program:
a:= n-> add(`if`(isprime(n+i), 1, 0), i=-1..1):
seq(a(n), n=1..120); # Alois P. Heinz, Apr 28 2020
MATHEMATICA
Table[PrimePi[n + 1] - PrimePi[n - 2], {n, 100}] (* Wesley Ivan Hurt, Apr 26 2020 *)
PROG
(PARI) a(n) = primepi(n+1) - primepi(n-2); \\ Michel Marcus, Apr 27 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved