login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = pi(n + 1) - pi(n - 2), where pi is the prime counting function.
1

%I #26 May 18 2020 07:03:04

%S 1,2,2,2,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,1,0,0,0,1,1,2,1,1,0,0,

%T 0,1,1,1,0,1,1,2,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,2,1,1,0,0,0,1,1,1,

%U 0,1,1,2,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,1,2,1,1,0

%N a(n) = pi(n + 1) - pi(n - 2), where pi is the prime counting function.

%C Conjecture: a(n) = 2 for infinitely many n. This is equivalent to the twin prime conjecture. - _Andrew Slattery_, Apr 26 2020

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TwinPrimeConjecture.html">Twin Prime Conjecture</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Twin_prime#Other_theorems_weaker_than_the_twin_prime_conjecture">Twin prime</a>

%F From _Alois P. Heinz_, Apr 28 2020: (Start)

%F a(n) = 2 <=> n in { 2,3 } union { A014574 }.

%F a(n) = 0 <=> { A079364 }. (End)

%p A168141 := proc(n) numtheory[pi](n+1)-numtheory[pi](n-2) ; end proc: seq(A168141(n),n=1..120) ; # _R. J. Mathar_, Nov 19 2009

%p # second Maple program:

%p a:= n-> add(`if`(isprime(n+i), 1, 0), i=-1..1):

%p seq(a(n), n=1..120); # _Alois P. Heinz_, Apr 28 2020

%t Table[PrimePi[n + 1] - PrimePi[n - 2], {n, 100}] (* _Wesley Ivan Hurt_, Apr 26 2020 *)

%o (PARI) a(n) = primepi(n+1) - primepi(n-2); \\ _Michel Marcus_, Apr 27 2020

%Y Cf. A000720, A014574, A079364, A090406.

%K nonn

%O 1,2

%A _Juri-Stepan Gerasimov_, Nov 19 2009