login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168035
Primes p for which floor(p^phi) and floor(phi^p) are prime.
0
2, 5, 7, 17, 61, 617, 7741, 10691
OFFSET
1,1
MATHEMATICA
$MaxExtraPrecision=8!; Select[Prime[Range[3*6! ]], PrimeQ[Floor[ #^GoldenRatio]]&&PrimeQ[Floor[GoldenRatio^# ]]&]
PROG
(PARI) phi=(1+sqrt(5))/2; forprime(p=2, 1e3, if(isprime(floor(p^phi)) && isprime(floor(phi^p)), print1(p", "))) \\ Charles R Greathouse IV, Jul 29 2011
CROSSREFS
Intersection of A168033 and A168034.
Sequence in context: A303677 A303802 A045357 * A247323 A099357 A306918
KEYWORD
nonn,less
AUTHOR
STATUS
approved