login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168035
Primes p for which floor(p^phi) and floor(phi^p) are prime.
0
2, 5, 7, 17, 61, 617, 7741, 10691
OFFSET
1,1
MATHEMATICA
$MaxExtraPrecision=8!; Select[Prime[Range[3*6! ]], PrimeQ[Floor[ #^GoldenRatio]]&&PrimeQ[Floor[GoldenRatio^# ]]&]
PROG
(PARI) phi=(1+sqrt(5))/2; forprime(p=2, 1e3, if(isprime(floor(p^phi)) && isprime(floor(phi^p)), print1(p", "))) \\ Charles R Greathouse IV, Jul 29 2011
CROSSREFS
Intersection of A168033 and A168034.
Sequence in context: A303677 A303802 A045357 * A247323 A099357 A306918
KEYWORD
nonn,less
AUTHOR
STATUS
approved