login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168033
Primes p such that floor(phi^p) is prime.
2
2, 5, 7, 11, 13, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, 10691, 12251, 13963, 14449, 19469, 35449, 36779, 44507, 51169, 56003, 81671, 89849, 94823, 140057, 148091, 159521, 183089, 193201, 202667, 344293, 387433, 443609, 532277, 574219, 616787, 631181, 637751, 651821, 692147, 901657, 1051849
OFFSET
1,1
COMMENTS
Primes in A059791. - Charles R Greathouse IV, Jul 29 2011
Also primes in A001606. - Michel Marcus, Oct 21 2016
MATHEMATICA
$MaxExtraPrecision=6!; Select[Prime[Range[5! ]], PrimeQ[Floor[GoldenRatio^# ]]&]
PROG
(PARI) phi=(1+sqrt(5))/2; forprime(p=2, 1e3, if(isprime(floor(phi^p)), print1(p", "))) \\ Charles R Greathouse IV, Jul 29 2011
(Magma) [p: p in PrimesUpTo(2000)| IsPrime(Lucas(p))]; // Vincenzo Librandi, Jul 11 2019
CROSSREFS
Sequence in context: A165439 A228200 A245063 * A331486 A257974 A323782
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(22)-a(32) from Charles R Greathouse IV, Jul 29 2011
More terms (using A001606) from Joerg Arndt, Jul 11 2019
STATUS
approved