login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p for which floor(p^phi) and floor(phi^p) are prime.
0

%I #5 May 13 2013 01:49:11

%S 2,5,7,17,61,617,7741,10691

%N Primes p for which floor(p^phi) and floor(phi^p) are prime.

%t $MaxExtraPrecision=8!; Select[Prime[Range[3*6! ]],PrimeQ[Floor[ #^GoldenRatio]]&&PrimeQ[Floor[GoldenRatio^# ]]&]

%o (PARI) phi=(1+sqrt(5))/2; forprime(p=2, 1e3, if(isprime(floor(p^phi)) && isprime(floor(phi^p)), print1(p", "))) \\ _Charles R Greathouse IV_, Jul 29 2011

%Y Intersection of A168033 and A168034.

%K nonn,less

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Nov 17 2009