OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,-1035).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 1035*t^16 - 45*t^15 - 45*t^14 - 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
From G. C. Greubel, Jan 17 2023: (Start)
a(n) = Sum_{j=1..15} a(n-j) - 1035*a(n-16).
G.f.: (1+x)*(1-x^16)/(1 - 46*x + 1081*x^16 - 1035*x^17). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^16)/(1-46*t+1081*t^16-1035*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 03 2016; Jan 17 2023 *)
coxG[{16, 1035, -45}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jan 17 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^17)/(1-46*x+1081*x^16-1035*x^17) )); // G. C. Greubel, Jan 17 2023
(SageMath)
def A167978_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^17)/(1-46*x+1081*x^16-1035*x^17) ).list()
A167978_list(30) # G. C. Greubel, Jan 17 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved