login
A167978
Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
7
1, 47, 2162, 99452, 4574792, 210440432, 9680259872, 445291954112, 20483429889152, 942237774900992, 43342937645445632, 1993775131690499072, 91713656057762957312, 4218828178657096036352, 194066096218226417672192
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170766, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,-1035).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 1035*t^16 - 45*t^15 - 45*t^14 - 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
From G. C. Greubel, Jan 17 2023: (Start)
a(n) = Sum_{j=1..15} a(n-j) - 1035*a(n-16).
G.f.: (1+x)*(1-x^16)/(1 - 46*x + 1081*x^16 - 1035*x^17). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^16)/(1-46*t+1081*t^16-1035*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 03 2016; Jan 17 2023 *)
coxG[{16, 1035, -45}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jan 17 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^17)/(1-46*x+1081*x^16-1035*x^17) )); // G. C. Greubel, Jan 17 2023
(SageMath)
def A167978_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^17)/(1-46*x+1081*x^16-1035*x^17) ).list()
A167978_list(30) # G. C. Greubel, Jan 17 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved