login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167063
Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 5}}.
1
21, 16905, 11515392, 7766579625, 5234202655605, 3527304596766720, 2377020102892371573, 1601852459790100499625, 1079473906452564386072064, 727447713589013080159967625, 490220442215546503112745464469, 330355127203424593855513657344000, 222623335689469074506271256084716693
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs a X P_n, Ars Combin. 49 (1998), 129-154.
FORMULA
a(n) = 805 a(n-1)
- 94300 a(n-2)
+ 4128845 a(n-3)
- 82955561 a(n-4)
+ 801676960 a(n-5)
- 3659544950 a(n-6)
+ 8726681390 a(n-7)
- 11584112776 a(n-8)
+ 8726681390 a(n-9)
- 3659544950 a(n-10)
+ 801676960 a(n-11)
- 82955561 a(n-12)
+ 4128845 a(n-13)
- 94300 a(n-14)
+ 805 a(n-15)
- a(n-16)
G.f.: -21x(x^14 -5373x^12 +196420x^11 -2311184x^10 +8452500x^9 -10863790x^8 +10863790x^6 -8452500x^5 +2311184x^4 -196420x^3 +5373x^2 -1)/ (x^16 -805x^15 +94300x^14 -4128845x^13 +82955561x^12 -801676960x^11 +3659544950x^10 -8726681390x^9 +11584112776x^8 -8726681390x^7 +3659544950x^6 -801676960x^5 +82955561x^4 -4128845x^3 +94300x^2 -805x +1).
CROSSREFS
Sequence in context: A220643 A185557 A276513 * A115485 A172724 A001167
KEYWORD
nonn,easy
AUTHOR
STATUS
approved