The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276513 a(n) = the smallest number k>1 such that Sum_{p|k} 0.p = n where p runs through the prime divisors of k. 6
 21, 16102, 281785, 275867515, 9178864590, 8533159052845, 9404411107962990 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Here 0.p means the decimal fraction obtained by writing p after the decimal point, e.g. 0.11 = 11/100. a(n) = the smallest number k>1 such that A276651(k) / A276652(k) = n. The first few values of Sum_{p|n} 0.p are: 1/5, 3/10, 1/5, 1/2, 1/2, 7/10, 1/5, 3/10, 7/10, ... Conjecture: a(4) = 730610790; Sum_{p|730610790} 0.p = 0.2 + 0.3 + 0.5 + 0.7 + 0.13 + 0.31 + 0.89 + 0.97 = 4. Subsequence of A005117. - Chai Wah Wu, Sep 15 2016 a(8) <= 8646420251472669505, a(9) <= 1879755659507289195345, a(10) <= 3625424828481802325595910. - Giovanni Resta, Aug 19 2019 LINKS EXAMPLE Number 16102 is the smallest number k with Sum_{p|k} 0.p = 2; set of prime divisors of 16102: {2, 83, 97}; Sum_{p|16102} 0.p = 0.2 + 0.83 + 0.97 = 2. MATHEMATICA Table[k = 1; While[f = FactorInteger[k][[All, 1]];   Total[f*10^-IntegerLength[f]] != n, k++]; k, {n, 1, 4}] (* Robert Price, Sep 20 2019 *) PROG (MAGMA) A276513:=func; [A276513(n): n in[1..3]] CROSSREFS Cf. A005117, A276651, A276652, A276653, A276654, A276655. Sequence in context: A180769 A220643 A185557 * A167063 A115485 A172724 Adjacent sequences:  A276510 A276511 A276512 * A276514 A276515 A276516 KEYWORD nonn,base,more AUTHOR Jaroslav Krizek, Sep 14 2016 EXTENSIONS a(4) from Chai Wah Wu, Sep 16 2016 a(5)-a(7) from Giovanni Resta, Aug 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 15:34 EDT 2021. Contains 343742 sequences. (Running on oeis4.)