login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167061
Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}}.
1
40, 47040, 48384000, 49461807360, 50545351901000, 51651393970176000, 52781550346052950760, 53936428658183506928640, 55116575633234676605184000, 56322544581812152703647896000, 57554900528304912551898910864840, 58814220831251084699615165546496000, 60101095479875496770600392870888679560
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
FORMULA
a(n) = 1152 a(n-1)
- 138048 a(n-2)
+ 5263416 a(n-3)
- 72792384 a(n-4)
+ 279916416 a(n-5)
- 429599666 a(n-6)
+ 279916416 a(n-7)
- 72792384 a(n-8)
+ 5263416 a(n-9)
- 138048 a(n-10)
+ 1152 a(n-11)
- a(n-12)
G.f.: -40x(x^10 +24x^9 -7104x^8 +167016x^7 -378475x^6 +378475x^4 -167016x^3 +7104x^2 -24x -1)/ (x^12 -1152x^11 +138048x^10 -5263416x^9 +72792384x^8 -279916416x^7 +429599666x^6 -279916416x^5 +72792384x^4 -5263416x^3 +138048x^2 -1152x +1).
CROSSREFS
Sequence in context: A185194 A214138 A239168 * A283664 A159404 A323489
KEYWORD
nonn
AUTHOR
STATUS
approved