login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167059
Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}}.
1
8, 4032, 1612800, 631427328, 246562692200, 96244833484800, 37566939748080392, 14663279200231130112, 5723424260979717196800, 2233987356983360324068800, 871977888467614764819315368, 340353508793721676084268236800, 132847991246505889127220947758952
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
FORMULA
a(n) = 504 a(n-1)
- 48706 a(n-2)
+ 1765008 a(n-3)
- 29021617 a(n-4)
+ 239655024 a(n-5)
- 1039298722 a(n-6)
+ 2447629128 a(n-7)
- 3242171236 a(n-8)
+ 2447629128 a(n-9)
- 1039298722 a(n-10)
+ 239655024 a(n-11)
- 29021617 a(n-12)
+ 1765008 a(n-13)
- 48706 a(n-14)
+ 504 a(n-15)
- a(n-16)
G.f.: -8x (x^14 -3710x^12 +104832x^11 -997954x^10 +3633840x^9 -4759203x^8 +4759203x^6 -3633840x^5 +997954x^4 -104832x^3 +3710x^2-1)/ (x^16 -504x^15 +48706x^14 -1765008x^13 +29021617x^12 -239655024x^11 +1039298722x^10 -2447629128x^9 +3242171236x^8 -2447629128x^7 +1039298722x^6 -239655024x^5 +29021617x^4 -1765008x^3 +48706x^2 -504x+1).
CROSSREFS
Sequence in context: A221243 A351409 A024113 * A013742 A209592 A060760
KEYWORD
nonn
AUTHOR
Paul Raff, Jun 01 2010
STATUS
approved