login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167058
Number of spanning trees in (S_5 + e) X P_n.
1
3, 945, 221184, 50055705, 11275732875, 2538325278720, 571357349020731, 128606300878893705, 28947814696524275712, 6515821689652895090625, 1466636804229895456081107, 330123137841949620861665280, 74306935243221668928140352051
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
P. Raff, Analysis of the Number of Spanning Trees of (S_5 + e) x P_n. Contains sequence, recurrence, generating function, and more.
Index entries for linear recurrences with constant coefficients, signature (270,-10529,95310,-177156,95310,-10529,270,-1).
FORMULA
a(n) = 270 a(n-1)
- 10529 a(n-2)
+ 95310 a(n-3)
- 177156 a(n-4)
+ 95310 a(n-5)
- 10529 a(n-6)
+ 270 a(n-7)
- a(n-8)
G.f.: -3x(x^6 +45x^5 -793x^4 +793x^2 -45x -1)/ (x^8 -270x^7 +10529x^6 -95310x^5 +177156x^4 -95310x^3 +10529x^2 -270x +1)
MATHEMATICA
CoefficientList[Series[-3x (x^6+45x^5-793x^4+793x^2-45x-1)/(x^8-270x^7+ 10529x^6-95310x^5+177156x^4-95310x^3+10529x^2-270x+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{270, -10529, 95310, -177156, 95310, -10529, 270, -1}, {0, 3, 945, 221184, 50055705, 11275732875, 2538325278720, 571357349020731}, 30] (* Harvey P. Dale, Nov 22 2021 *)
CROSSREFS
Sequence in context: A094592 A210768 A332193 * A167067 A324443 A151585
KEYWORD
nonn
AUTHOR
STATUS
approved