Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 23 2023 10:18:04
%S 21,16905,11515392,7766579625,5234202655605,3527304596766720,
%T 2377020102892371573,1601852459790100499625,1079473906452564386072064,
%U 727447713589013080159967625,490220442215546503112745464469,330355127203424593855513657344000,222623335689469074506271256084716693
%N Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 5}}.
%D F. Faase, On the number of specific spanning subgraphs of the graphs a X P_n, Ars Combin. 49 (1998), 129-154.
%H P. Raff, <a href="/A167063/b167063.txt">Table of n, a(n) for n = 1..200</a>
%H F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
%H F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>
%H F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a>
%H P. Raff, <a href="http://arxiv.org/abs/0809.2551">Spanning Trees in Grid Graphs</a>, arXiv:0809.2551 [math.CO], 2008.
%H P. Raff, <a href="http://www.math.rutgers.edu/~praff/span/5/12-13-14-15-23-24-35/index.xml">Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 5}}.</a> Contains sequence, recurrence, generating function, and more.
%H P. Raff, <a href="http://www.myraff.com/projects/spanning-trees-in-grid-graphs">Analysis of the Number of Spanning Trees of Grid Graphs</a>.
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F a(n) = 805 a(n-1)
%F - 94300 a(n-2)
%F + 4128845 a(n-3)
%F - 82955561 a(n-4)
%F + 801676960 a(n-5)
%F - 3659544950 a(n-6)
%F + 8726681390 a(n-7)
%F - 11584112776 a(n-8)
%F + 8726681390 a(n-9)
%F - 3659544950 a(n-10)
%F + 801676960 a(n-11)
%F - 82955561 a(n-12)
%F + 4128845 a(n-13)
%F - 94300 a(n-14)
%F + 805 a(n-15)
%F - a(n-16)
%F G.f.: -21x(x^14 -5373x^12 +196420x^11 -2311184x^10 +8452500x^9 -10863790x^8 +10863790x^6 -8452500x^5 +2311184x^4 -196420x^3 +5373x^2 -1)/ (x^16 -805x^15 +94300x^14 -4128845x^13 +82955561x^12 -801676960x^11 +3659544950x^10 -8726681390x^9 +11584112776x^8 -8726681390x^7 +3659544950x^6 -801676960x^5 +82955561x^4 -4128845x^3 +94300x^2 -805x +1).
%K nonn,easy
%O 1,1
%A _Paul Raff_