The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166988 Products n of a square of a prime and a cube of a prime such that n-1 and n+1 are semiprimes. 1
 392, 14792, 19652, 48668, 55112, 197192, 291848, 783752, 908552, 963272, 1203052, 1541768, 1670792, 5081672, 5903048, 8193532, 9732872, 10089032, 10285412, 12241352, 13333448, 13960328, 14087432, 14818568, 15882248, 16290632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Intersection of A143610 and A124936. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..112 EXAMPLE 392 = 7^2*2^3; 391 = 17*23 and 393 = 3*131 are semiprimes, hence 392 is in the sequence. 14792 = 2^3*43^2 is in the sequence because 14791=7*2113 and 14793=3*4931 are semiprimes. MATHEMATICA f2[n_]:=Last/@FactorInteger[n]=={2, 3}||Last/@FactorInteger[n]=={3, 2}; f1[n_]:=Plus@@Last/@FactorInteger[n]==2; lst={}; Do[If[f2[n], If[f1[n-1]&&f1[n+1], AppendTo[lst, n]]], {n, 10!}]; lst With[{prs=Prime[Range[300]]}, Union[Select[Times@@@Tuples[{prs^2, prs^3}], PrimeOmega[#-1] == PrimeOmega[#+1]==2&]]] (* Harvey P. Dale, Aug 13 2013 *) PROG (PARI) {m=17000000; v=[]; forprime(j=2, sqrtint(m\8), a=j^2; g=sqrtn(m\a, 3); forprime(k=2, g, n=a*k^3; if(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 08:19 EDT 2022. Contains 355031 sequences. (Running on oeis4.)