login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166988
Products n of a square of a prime and a cube of a prime such that n-1 and n+1 are semiprimes.
1
392, 14792, 19652, 48668, 55112, 197192, 291848, 783752, 908552, 963272, 1203052, 1541768, 1670792, 5081672, 5903048, 8193532, 9732872, 10089032, 10285412, 12241352, 13333448, 13960328, 14087432, 14818568, 15882248, 16290632
OFFSET
1,1
COMMENTS
Intersection of A143610 and A124936.
LINKS
EXAMPLE
392 = 7^2*2^3; 391 = 17*23 and 393 = 3*131 are semiprimes, hence 392 is in the sequence.
14792 = 2^3*43^2 is in the sequence because 14791=7*2113 and 14793=3*4931 are semiprimes.
MATHEMATICA
f2[n_]:=Last/@FactorInteger[n]=={2, 3}||Last/@FactorInteger[n]=={3, 2}; f1[n_]:=Plus@@Last/@FactorInteger[n]==2; lst={}; Do[If[f2[n], If[f1[n-1]&&f1[n+1], AppendTo[lst, n]]], {n, 10!}]; lst
With[{prs=Prime[Range[300]]}, Union[Select[Times@@@Tuples[{prs^2, prs^3}], PrimeOmega[#-1] == PrimeOmega[#+1]==2&]]] (* Harvey P. Dale, Aug 13 2013 *)
PROG
(PARI) {m=17000000; v=[]; forprime(j=2, sqrtint(m\8), a=j^2; g=sqrtn(m\a, 3); forprime(k=2, g, n=a*k^3; if(n<m, if(bigomega(n-1)==2&&bigomega(n+1)==2, v=concat(v, n))))); Vec(listsort(List(v), 1))} \\ Klaus Brockhaus, Oct 29 2009
CROSSREFS
Cf. A001248 (squares of primes), A030078 (cubes of primes), A001358 (semiprimes).
Sequence in context: A235313 A203917 A180295 * A264311 A035751 A107547
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009
STATUS
approved