login
A166716
Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082433661, 947666592615379744800, 38854330297230568090320
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, -820).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^12 - 40*t^11 - 40*t^10 - 40*t^9 -40*t^8 -40*t^7 -40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1).
MATHEMATICA
coxG[{12, 820, -40}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 16 2015 *)
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 24 2016 *)
CROSSREFS
Sequence in context: A165693 A166230 A166436 * A167095 A167599 A167848
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved