login
Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1

%I #12 Nov 24 2016 09:45:56

%S 1,42,1722,70602,2894682,118681962,4865960442,199504378122,

%T 8179679503002,335366859623082,13750041244546362,563751691026400842,

%U 23113819332082433661,947666592615379744800,38854330297230568090320

%N Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

%C The initial terms coincide with those of A170761, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A166716/b166716.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, -820).

%F G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^12 - 40*t^11 - 40*t^10 - 40*t^9 -40*t^8 -40*t^7 -40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1).

%t coxG[{12,820,-40}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jan 16 2015 *)

%t CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, May 24 2016 *)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009