login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166679
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 33, 1056, 33792, 1081344, 34603008, 1107296256, 35433480192, 1133871366144, 36283883716608, 1161084278931456, 37154696925806592, 1188950301625810416, 38046409652025916416, 1217485108864828785168, 38959523483674503840768
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170752, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, -496).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^12 - 31*t^11 - 31*t^10 - 31*t^9 -31*t^8 -31*t^7 -31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
MATHEMATICA
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^12 - 31*t^11 - 31*t^10 - 31*t^9 - 31*t^8 - 31*t^7 - 31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 23 2016 *)
coxG[{12, 496, -31}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 21 2021 *)
CROSSREFS
Sequence in context: A165645 A166129 A166427 * A167086 A167391 A167765
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved