login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166678
a(n) = pi((sqrt(P(n))+1)^2) - pi(P(n)), where pi(n) = number of primes <= n and P(n) = n-th primorial.
0
2, 2, 3, 6, 14, 34, 110, 384, 1540, 7019, 34501, 183439, 1045196, 6164423, 38285946
OFFSET
1,1
COMMENTS
Conjecture: pi((sqrt(P(n))+1)^2) - pi(P(n)) >= n.
MATHEMATICA
a[n_] := Product[Prime[k], {k, 1, n}]; Table[PrimePi[(Sqrt[a[n]] + 1)^2] - PrimePi[a[n]], {n, 1, 12}] (* G. C. Greubel, May 22 2016 *)
PROG
(PARI) a(n) = my(P=vecprod(primes(n))); primepi((sqrt(P)+1)^2) - primepi(P); \\ Michel Marcus, Aug 15 2022
CROSSREFS
Cf. A000720 (pi), A002110 (primorials), A000849 (pi(primorials)).
Sequence in context: A064674 A095902 A103687 * A032908 A192366 A318039
KEYWORD
nonn,more,less
AUTHOR
Daniel Tisdale, Oct 18 2009, Oct 23 2009
EXTENSIONS
a(13)-a(15) from Ray Chandler, May 10 2010
Name edited by Michel Marcus, Aug 15 2022
STATUS
approved