login
A166568
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516427, 326173191712368, 4240251492245496, 55123269398992704, 716602502184321480
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,12,12,12,12,12,12,12,12,12,12,-78).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t +1).
From G. C. Greubel, Dec 03 2024: (Start)
a(n) = 12*Sum_{j=1..11} a(n-j) - 78*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 13*x + 90*x^12 - 78*x^13). (End)
MATHEMATICA
coxG[{12, 78, -12}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 03 2015 *)
CoefficientList[Series[(1+t)*(1-t^12)/(1-13*t+90*t^12-78*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 17 2016; Dec 03 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)*(1-x^12)/(1-13*x+90*x^12-78*x^13) )); // G. C. Greubel, Dec 03 2024
(SageMath)
def A166568_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-13*x+90*x^12-78*x^13) ).list()
A166568_list(40) # G. C. Greubel, Dec 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved