login
A166366
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801964, 15818613552, 110730293520, 775112045232, 5425784250768, 37980489294384, 265863421833744, 1861043930247600, 13027307353612944
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003950, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(21*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^11)/(1-7*t+27*t^11-21*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^11)/(1-7*t+27*t^11-21*t^12), {t, 0, 30}], t] (* G. C. Greubel, May 10 2016 *)
coxG[{11, 21, -6}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 13 2020 *)
PROG
(Sage)
def A166366_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^11)/(1-7*t+27*t^11-21*t^12) ).list()
A166366_list(30) # G. C. Greubel, Mar 13 2020
CROSSREFS
Sequence in context: A164769 A165215 A165786 * A166538 A166910 A167109
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved