login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166004
Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1
1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648426, 8589706234144560, 240511774555729782, 6734329687551532752, 188561231251193685024, 5279714475026444683776
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (27,27,27,27,27,27,27,27,27,-378).
FORMULA
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^10 - 27*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Oct 25 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 21 2016 *)
coxG[{10, 378, -27}] (* The coxG program is at A169452 *) (* G. C. Greubel, Oct 25 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11)) \\ G. C. Greubel, Oct 25 2019
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11) )); // G. C. Greubel, Oct 25 2019
(Sage)
def A166004_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11)).list()
A166004_list(30) # G. C. Greubel, Oct 25 2019
(GAP) a:=[29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648426];; for n in [11..30] do a[n]:=27*Sum([1..9], j-> a[n-j]) - 378*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Oct 25 2019
CROSSREFS
Sequence in context: A164665 A164974 A165512 * A166423 A166616 A167082
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved