OFFSET
1,4
COMMENTS
a(v+1) is also the number of n-color perfect partitions of v. An n-color perfect partition of v is a partition into j types of each part j which contains one and only one n-color partition of each smaller number. - Augustine O. Munagi, May 09 2020
REFERENCES
A. K. Agarwal and R. Sachdeva, Combinatorics of n-Color Perfect Partitions, Ars Combinatoria 136 (2018), pp. 29--43.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
FORMULA
a(1) = 1, and for n > 1, a(n) = Sum_{d|n, d<n} d*a(d).
EXAMPLE
a(6)=6 because v=5 has six n-color perfect partitions:
(1,1,1,1,1), (1,2,2), (1,2',2'), (1,1,3), (1,1,3'), and (1,1,3'').
MATHEMATICA
a[1] = 1; a[n_] := a[n] = With[{k = Most[Divisors[n]]}, k . (a /@ k)]; Array[a, 100] (* Jean-François Alcover, Mar 31 2017 *)
PROG
(PARI) A165552(n) = if(1==n, n, sumdiv(n, d, if(d<n, d*A165552(d)))); \\ Antti Karttunen, Oct 30 2017
(Python)
from sympy import divisors
from sympy.core.cache import cacheit
@cacheit
def a(n): return 1 if n==1 else sum(d*a(d) for d in divisors(n)[:-1])
print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Oct 30 2017, after PARI code
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Sep 21 2009
STATUS
approved