login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067231
Number of Young tableaux with n=i*j cells and type i*j matrices with i>=j.
2
1, 1, 1, 3, 1, 6, 1, 15, 43, 43, 1, 595, 1, 430, 6007, 25455, 1, 92379, 1, 1679601, 1385671, 58787, 1, 163809451, 701149021, 742901, 414315331, 13675080331, 1, 404155466746, 1, 1489913284351, 145862174641, 129644791, 278607172289161, 1851800127304981, 1
OFFSET
1,4
COMMENTS
a(p) = 1 for prime p. - Alois P. Heinz, Jul 25 2012
LINKS
FORMULA
a(n) = number of ways to arrange the numbers 1, 2, .., n=i*j in i*j matrices so that each row and each column is increasing. Here i and j satisfy i >= j.
a(n) = n! * Sum_{i|n, i>=sqrt(n)} Product_{k=0..n/i-1} k!/(i+k)!. - Alois P. Heinz, Jul 25 2012
MAPLE
with(numtheory):
a:= n-> n!*add(mul(k!/(i+k)!, k=0..n/i-1),
i=select(d-> is(d>=sqrt(n)), divisors(n))):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 25 2012
MATHEMATICA
a[n_] := n!*Sum[Product[k!/(i+k)!, {k, 0, n/i-1}], {i, Select[Divisors[n], # >= Sqrt[n]&]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 20 2002
STATUS
approved