login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007650
Number of set-like atomic species of degree n.
(Formerly M2227)
2
0, 1, 1, 1, 3, 1, 6, 1, 10, 4, 12, 1, 33, 1, 29, 13, 64, 1, 100, 1, 156, 30, 187, 1, 443, 10, 476, 78, 877, 1, 1326, 1, 2098, 188, 2745, 36, 5203, 1, 6408, 477, 11084, 1, 15687, 1, 24709, 1241, 33249, 1, 57432, 27, 74529, 2746, 120984, 1, 168668, 194, 264075, 6409, 356624, 1, 579893, 1, 768857, 14898, 1214452, 483, 1669060, 1
OFFSET
0,5
REFERENCES
G. Labelle and P. Leroux, Identities and enumeration: weighting connected components, Abstracts Amer. Math. Soc., 15 (1994), Meeting #896.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Eberhart & N. J. A. Sloane, Correspondence, 1977
G. Labelle and P. Leroux, Identities and enumeration: weighting connected components, Abstracts Amer. Math. Soc., 15 (1994), Meeting #896. (Annotated scanned copy)
G. Labelle and P. Leroux, An extension of the exponential formula in enumerative combinatorics, The Electronic Journal of Combinatorics, Volume 3, Issue 2 (1996) (The Foata Festschrift volume), Research Paper #R12.
N. J. A. Sloane, Transforms
FORMULA
Inverse Euler Transform of A007649. Define c(n): c(0)=0. c(k)=A007649(k), k>0. a=MOEBIUSi(c)-c. - Christian G. Bower, Feb 23 2006
MATHEMATICA
NN = 66; va = Array[0&, NN]; va[[1]] = 0; va[[2]] = 1; vm = Array[0&, NN]; vm[[1]] = 1; vm[[2]] = 1; For[n = 2, n <= NN - 1, n++, va[[n + 1]] = DivisorSum[n , vm[[#+1]]&]; vm[[n+1]] = 1/n*Sum[DivisorSum[k, #*va[[#+1]] &]*vm[[n-k+1]], {k, 1, n}]]; va (* Jean-François Alcover, Dec 01 2015, adapted from Joerg Arndt's PARI script in A007649 *)
PROG
(PARI) /* see A007649 */
CROSSREFS
Sequence in context: A360654 A145063 A202851 * A236540 A339384 A165552
KEYWORD
nonn
AUTHOR
EXTENSIONS
Added more terms, Joerg Arndt, Jul 30 2012
STATUS
approved