OFFSET
1,2
COMMENTS
This is the 4th row of the infinite array A(k,n) = n-th positive integer such that the sum of the distinct prime factors is of the form j^k for integers j, k. The 2nd row is A164722 (hence the current sequence is a proper subset of A164722). The 3rd row is A164788. The smallest integers whose sum of distinct prime factors is 4^4 are {1255, 1506, 3012, ...}. The smallest integers whose sum of distinct prime factors is 5^4 are {9255, 21455, ...}. The smallest integers whose sum of distinct prime factors is 6^4 are {6455, 7746, ...}. The smallest integers whose sum of distinct prime factors is 7^4 are {4798, 9596, ...}.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..5000
EXAMPLE
a(2) = 39, because 39 = 3*13, and 3+13 = 16 = 2^4.
a(7) = 158, because 158 = 2*79, and 2+79 = 81 = 3^4.
MAPLE
A008472 := proc(n) add( p, p = numtheory[factorset](n)) ; end: isA000583 := proc(n) iroot(n, 4, 'exct') ; exct ; end: A165346 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do if isA000583(A008472(a)) then RETURN(a); fi; od: fi; end: seq(A165346(n), n=1..80) ; # R. J. Mathar, Sep 20 2009
MATHEMATICA
a165346[n_] := Select[Range@n, IntegerQ[Power[Plus @@ Transpose[FactorInteger[#]][[1]], 1/4]] &]; a165346[3400] (* Michael De Vlieger, Jan 06 2015 *)
PROG
(PARI) isok(n) = my(f=factor(n)); ispower(vecsum(f[, 1]), 4); \\ Michel Marcus, Jan 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Sep 15 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 20 2009
STATUS
approved