The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268083 Numbers n that are not prime powers and such that gcd(binomial(2*n-1,n), n) = 1. 2
 39, 55, 93, 111, 119, 155, 161, 185, 253, 275, 279, 305, 327, 333, 351, 363, 377, 403, 407, 413, 497, 511, 517, 533, 559, 629, 635, 649, 655, 685, 689, 697, 707, 741, 749, 755, 779, 785, 791, 813, 817, 849, 871, 893, 901, 905, 923, 981, 1003, 1011, 1027, 1043 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS It seems there is a typo in the Gua and Zeng link, it gives 175 instead of 185 as a term. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 Victor J.W. Guo and Jiang Zeng, Factors of binomial sums from the Catalan triangle, Journal of Number Theory 130 (2010) 172-186. MATHEMATICA Select[Range[2, 1100], !PrimePowerQ[#]&&GCD[Binomial[2#-1, #], #]==1&] (* Harvey P. Dale, May 26 2020 *) PROG (PARI) isok(n) = (n != 1) && !isprimepower(n) && (gcd(binomial(2*n-1, n), n) == 1); (Magma) [n : n in [2..2000] | not IsPrimePower(n) and Gcd(Binomial(2*n-1, n), n) eq 1]; // Vincenzo Librandi, Jan 26 2016 (Python) from __future__ import division from fractions import gcd from sympy import factorint A268083_list, b = [], 1 for n in range(1, 10**4): if len(factorint(n)) > 1 and gcd(b, n) == 1: A268083_list.append(n) b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Jan 26 2016 CROSSREFS Cf. A000961, A088218, A268082. Sequence in context: A227735 A319983 A165346 * A063480 A305026 A009633 Adjacent sequences: A268080 A268081 A268082 * A268084 A268085 A268086 KEYWORD nonn AUTHOR Michel Marcus, Jan 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 03:08 EDT 2024. Contains 372782 sequences. (Running on oeis4.)