login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165161
Numerator of the n-th term in the first differences of the binomial transform of the "original" Bernoulli numbers.
2
1, 2, 5, 29, 31, 43, 41, 29, 31, 71, 61, 2039, 3421, 13, -1, -3107, 4127, 44665, -43069, -174281, 174941, 854651, -854375, -236361361, 236366821, 8553109, -8553097, -23749460159, 23749461899, 8615841290327
OFFSET
0,2
COMMENTS
The binomial transform of the "original" Bernoulli numbers is 1, 3/2, 13/6, ... as mentioned in A164558.
The first differences of that sequence are 3/2 - 1 = 1/2, 13/6 - 3/2 = 2/3, 5/6, 29/30, 31/30, ... and the numerators of these differences are listed here.
The bisection a(2n) reappears (up to signs) as A162173(n+1).
FORMULA
a(2n) + A000367(n) = A006954(n+1) = A051717(2n+1).
a(2n+1) + a(2n+2) = A051717(2n+2) + A051717(2n+3), n > 0.
MAPLE
read("transforms") :
A164555 := proc(n) if n <= 2 then 1; else numer(bernoulli(n)) ; end if; end proc:
A027642 := proc(n) denom(bernoulli(n)) ; end proc:
nmax := 40:
BINOMIAL([seq(A164555(n)/A027642(n), n=0..nmax)]) :
map(numer, DIFF(%)) ; # R. J. Mathar, Jul 07 2011
CROSSREFS
Cf. A051717 (denominators), A164555, A027642.
Sequence in context: A049050 A344020 A178322 * A098858 A213995 A370513
KEYWORD
frac,sign
AUTHOR
Paul Curtz, Sep 06 2009
STATUS
approved