login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213995
Primes p=u^2+v^2 such that p+u or p+v is prime.
2
2, 5, 29, 37, 61, 89, 97, 157, 181, 197, 233, 317, 337, 349, 401, 457, 521, 557, 577, 593, 613, 701, 797, 829, 877, 1021, 1229, 1289, 1301, 1361, 1429, 1493, 1549, 1637, 1657, 1789, 1873, 1973, 2273, 2281, 2297, 2357, 2473, 2521, 2617, 2621, 2677, 2689, 2917, 3061, 3169, 3209, 3257, 3301
OFFSET
1,1
LINKS
EXAMPLE
29=5^2+2^2 is in the sequence because 29+2=31 is prime.
MAPLE
f:= proc(p) local F;
if not isprime(p) then return false fi;
F:= GaussInt:-GIfactors(p)[2][1][1];
isprime(p+abs(Re(F))) or isprime(p+abs(Im(F)))
end proc:
select(f, [2, seq(i, i=5..10000, 4)]); # Robert Israel, Apr 14 2020
MATHEMATICA
puvQ[{u_, v_}]:=Module[{p=u^2+v^2}, PrimeQ[p]&&AnyTrue[p+{u, v}, PrimeQ]]; Take[Union[ #[[1]]^2+#[[2]]^2&/@Select[Subsets[Range[-1, 100], {2}], puvQ]], 60] (* Harvey P. Dale, Sep 02 2023 *)
PROG
(PARI) list(lim)=my(L=List([2]), u2, p); for(u=2, sqrtint(lim\=1), u2=u^2; forstep(v=if(u%2, 2, 1), min(sqrtint(lim-u2), u-1), 2, if(isprime(p=u2+v^2) && (isprime(p+u) || isprime(p+v)), listput(L, p)))); Set(L) \\ Charles R Greathouse IV, Apr 14 2020
CROSSREFS
Subsequence of A002313.
Cf. A213996.
Sequence in context: A178322 A165161 A098858 * A370513 A134449 A103579
KEYWORD
nonn,easy
AUTHOR
Thomas Ordowski, Jun 30 2012
EXTENSIONS
Terms >=61 by R. J. Mathar, Jun 30 2012
STATUS
approved